

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): DATE: (日期):2017-03-08

CATEGORY (品名)	:	CONDUCTIVE POLYMER ALUMINUM
		SOLID CAPACITORS
DESCRIPTION (型号)	:	ULG 25V100 μ F (φ10x12.5)
()		
VERSION (版本)	:	01
Customer P/N		/
	•	1
SUPPLIER	:	/

SUPPLI	ER	CUSTOMER		
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)	
李婷	王国华			

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

RECORDS Rev. Date Mark Page Contents Purpose Drafter Ap Image: Ima	Y
Rev. Date Mark Page Contents Purpose Drafter Ap	
	prove

Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	1
	STA	ANDARD MANUAL		

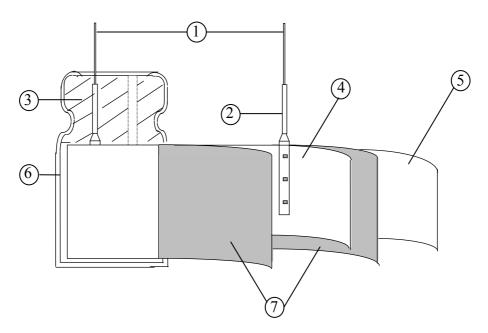
C O N T E N T S	
Annliestion	Sheet
. Application . Part Number System	3
Part Number SystemConstruction	3 4
Characteristics	5~11
4.1 Rated voltage & Surge voltage4.2 Capacitance (Tolerance)	
1.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic	
4.7 Load life test	
1.8 Surge test	
4.9 Damp heat test	
4.10 Maximum permissible ripple current	
.11 Rapid change of temperature	
.12 Lead strength .13 Resistance to vibration	
.14 Solderability	
.15 Resistance to soldering heat	
. Product Marking	12
. Product Dimensions, Impedance & Maximum Permissible Ripp	
. Application Guideline	14~15
-1 Circuit design	11 15
-2 Voltage	
-3 Sudden charge and discharge restricted	
-4 Ripple current	
-5 Leakage current	
-6 Failure rate	
-7 Capacitor insulation	
-8 Precautions for using capacitors	
. Mounting Precautions	15
. List of "Environment-related Substances to be Controlled ('Controlled Sub	ostances')" 16

Issued-date: 2017-03-08	Name	Specification Sheet – ULG					
Version	01		Page	2			
	STANDARD MANUAL						

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

X-CON

1. Application This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment. Part Number System 2. ULG 107 M <u>G</u> 1E <u>1B</u> RR Type (2.3) Case Length (2.6) - Diameter (2.5) -Voltage (2.2) - Tolerance (2.4) Capacitance (2.1)- Series 2.1 Capacitance code 107 Code Capacitance (μF) 100 2.2 Rated voltage code Code 1E Voltage (W.V.) 25 2.3 Type Code RR Туре Bulk 2.4 Capacitance tolerance "M" stands for $-20\% \sim +20\%$ 2.5 Diameter Code G Diameter 10 2.6 Case length 1B=12.5mm


Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	3
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

X-CON

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
		Tinned Copper Line
1	Lead Line	or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issued-date: 2017-03-08	Name	Specification Sheet – ULG				
Version	01		Page	4		
STANDARD MANUAL						

X-CON

4. Characteristics

Standard atmospheric conditions Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows: Ambient temperature: 15°C to 35°C Relative humidity : 45% to75% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	5
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

	ITEM	PERFORMANCE
4.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 25 SV (V.DC) 28.7
4.2	Nominal capacitance (Tolerance)	<condition>Measuring Frequency: 120Hz\pm12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>
4.3	Leakage current	<condition></condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10 \Omega$) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105°C <criteria></criteria> See Table 3
4.4	tan δ	<condition> See 4.2, for measuring frequency, voltage and temperature.<criteria>Working voltage (v)25 $\tan \delta (max.)$0.12</criteria></condition>
4.5	ESR	$<$ Condition>Measuring frequency : 100kHz to 300kHz; Measuring temperature:20 \pm 2°C Measuring point : 2mm max from the surface of a sealing resin on the lead wire. $<$ Criteria> (20°C)Less than the initial limit(See Table 3).

Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	6
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

		STEP	Temperature(°C)	Item	Characteristics									
		1	20±2	Measure: Capacitance、 tanδ 、 Impedance										
		2	-55+3	Z-55°C / 20°C	≤1.25									
	Temperature	3	Keep at 15 to 35°C for 15 minutes or more											
4.6	characteristic	4	105 ± 2	Z105°C / 20°C	≤1.25									
				Δ C/C 20°C	Within \pm 5% of step1									
		5	20±2	tanð	Less than or equal to the value of item 4.4									
		The C		The result should meet										
		Item	Per	formance										
		Capa		Within $\pm 20\%$ of initial capacitance										
		tan δ	iter	Less than or equal to 1.5 times of the value of item 4.4										
	Load	Load	Load	Load			Load	Load	Load	ESR		Less than or equal to 1.5 times of the value of item 4.5		
				Less than or equal to the value of item 4.3										
4.7	life test			s than or equal to the va able changes shall not l										

Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	7
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

4.8	Surge		l be 15~35℃.
	test	tan δ	Less than or equal to 1.5 times of the value of item 4.4
		ESR	Less than or equal to 1.5 times of the value of item 4.5
		Leakage current	Less than or equal to the value of item 4.3
		Attention: This test sin hypothesizing that over v	nulates over voltage at abnormal situation, and not be oltage is always applied.
		-	xposed for 1000 ± 48 hours in an atmosphere of 90~95%RH at istic change shall meet the following requirement.PerformanceWithin $\pm 20\%$ of initial capacitanceLoss them or equal to 1.5 times of the value of item
		tan δ	Less than or equal to 1.5 times of the value of item 4.4
	Damp	ESR	Less than or equal to 1.5 times of the value of item 4.5
4.9	heat test	Leakage current	Less than or equal to the value of item 4.3
		Appearance	Notable changes shall not be found.

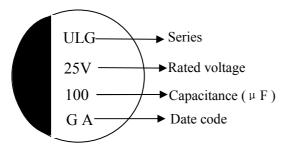
Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	8
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

		<condition< td=""><td></td><td></td><td></td><td></td><td></td><td></td></condition<>							
		At 100kHz Table 3 The combi	z and can	be applied at	maximum oper ge and the peak	haximum A.C cu ating temperature A.C voltage sha	e see	exceed the	
		Frequency	Multiplie	ers:					
	Maximum permissible	Freque		120Hz≤ f<1kHz	1kHz≤ f<10kHz	10kHz≤ f<100kHz		0kHz≤ 500kHz	
4.10	(ripple current)	Coeffic	ient	0.05	0.30	0.70		1.00	
		Applied volt	togo: with	yout load					
		Cycle numb Test diagrar	er: 5 cyc		30±3 min 3 mi 1 cyc	Room $30 \pm 3 \min$ n or less	5±2℃ n temp ±3℃	erature	
		Performance	e: The ca	pacitors shall	meet the follow	ving specification	n after	5 cycles.	
4 1 1	Rapid change	Ite	m	Performance					
4.11	of temperature	Capacitan	-	e Within \pm	10% of initial	capacitance			
		tan	δ		or equal to valu				
		Leakage	Leakage currentLess than or equal to the value of item 4.3 (after voltage treatment)						
Issu	ed-date: 2017-02	3-08 Nar	ne Sp	ecification	Sheet – ULG				
	Version	01				Р	age	9	
		I	STANI	DARD MAN	JUAL	1			

SOLID POLYMER CAPACITOR SPECIFICATION ULG SERIES

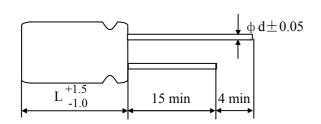
		a) Lead p	oull strength						
				-	-	terminal in the axial	direction a	and acting	
		in a		way from the	± 1 s.		_		
			Lead v	wire diameter	(mm)	Load force	(N)		
			0.5	$<$ d \leq 0.8		10			
		b) Lead b	•	· · · · · · 1 · · · 1			1.4	C. 1	
4.10						position and the wei the capacitor is slow			
	T 1					vertical position thus			
4.12	Lead strength		2~3seconds.			, ender position and	, compress		
		The	additional b	ends are mad	le in the opp	osite direction			
			Lead wi	re diameter (1	nm)	Load force (N	()		
			0.5 <	$d \leq 0.8$		5			
				ne characteris		t the following value	e after a) o	or b) test.	
		Iter			Performan				
			akage curren			or equal to the value		3	
		Ou	tward Appea	arance	No cutting	and slack of lead ter	minais		
		-	•			→ 55 → 10Hz			
		Amplitude: 0.75mm(Total excursion 1.5mm)							
		Direction :X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours)							
				ipported as th	· ·	Fig?			
		The cupu	leiters are su	ipported us th	e lono wing i	1.152			
			г						
						1			
	Resistance to								
4.13	vibration					▼ ≤0.3mm			
		l				Ι			
				I	Fig2				
		Performa	ance: Capaci	tance value s	hall not show	v drastic change con	pared to	the initial	
		Performance: Capacitance value shall not show drastic change compared to the initial capacitance when the value is measured within 30 minutes. Prior to the completion of							
		exam, Ca	apacitance d	ifference shal	l be within	\pm 5% compared to the	e initial v	alue the	
		exam.							
Issu	ed-date: 2017-0)3-08	Name	Specificat	ion Sheet -	- ULG			
	Version		01				Page	10	
			STA	ANDARD N	MANUAL				

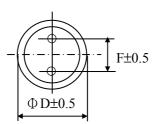

	Γ	
4.14	Solderability	The capacitor shall be tested under the following conditions:Solder: Sn-3Ag-0.5CuSoldering temperature: 245±3°CImmersing time: 3±0.5sImmersing depth: 1.5~ 2.0mm from the root.Flux: Approx .25% rosin (JIS K5902) in ETHANOL (JIS K1501)Performance: At least 95% of the dipped portion of the terminal shall be covered with new solder.
4.15	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260 ±5°C Immersing time : 10±1s Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : $400 \pm 10^{\circ}$ C Application time : $3\pm1/-0$ s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: <u>Item Performance</u> Capacitance Change Within $\pm 5\%$ of initial capacitance tan δ Less than or equal to the value of item 4.4 ESR Less than or equal to the value of item 4.3 (after voltage treatment) Appearance Notable changes shall not be found.

Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	11
	STA	ANDARD MANUAL		

X-CON

5. Product Marking


Marking Sample:



Code Year	C 2013	D 2014	E 2015	G 2017		M	anufact	ured we	eek: see	Table	2
Table 2 Manufactured year: see Table 1											
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	С	D	Е	F	G	Н	Ι	J	K
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	М	N	0	Р	Q	R	S	Т	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	Х	Y	Z	A	B	C	D	E	F	G
Week	34	35	36	37	38	39	40	41	42	43	44
Code	H	Ī	<u>J</u>	<u>K</u>	L	M	N	<u>0</u>	<u>P</u>	Q	<u>R</u>
Week	45	46	47	48	49	50	51	52]		
Code	<u>S</u>	<u>T</u>	<u>U</u>	V	W	<u>X</u>	Y	<u>Z</u>			

Issued-date: 2017-03-08	Name	Specification Sheet – ULG		
Version	01		Page	12
	STA	ANDARD MANUAL		

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	10
L	12.5
F	5.0
φd	0.6

Table 3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 20°C100kHz (m Ω)	Leakage current (µA) 2min
25	100	10X12.5	4320	40	500

Issued-date: 2017-03-08	Name	Specification Sheet – ULG				
Version	01		Page	13		
STANDARD MANUAL						

7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

1) Time constant circuits

- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current

4) High impedance voltage retention circuits.

7-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

(2) When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tunid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issued-date: 2017-03-08	Name	Specification Sheet – ULG				
Version	01		Page	14		
STANDARD MANUAL						

7-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the

PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

5) Acid or alkaline environments.

6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

8. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal		
	1) Used X-CON capacitors	Not reused		
Before mounting	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with 1K Ω		
	after long storage	resistance for 1 hour at the range between 60 and 70° C		
	3) X-CON capacitors dropped to the	Not reused		
	floor			
	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated		
	and rated voltage	voltage shouldn't be available		
	5) Precautions on the pitch between	The products can be used only when said pitch is matched		
	lead terminal and PCB			
	6) Precautions on the stress that lead	The products can be used for production only when lead		
	terminal and body of X-CON	terminal and body are not subject stress.		
	capacitors enduring in mounting			
Mounting	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet		
		the requirements of out-going SPEC; no stress should be		
		allowed to occur in mounting; Don't let the tip of the soldering iron touch the X-CON itself.		
	2) Flow soldering	X-CON capacitor body should be prohibited to submerge		
	2) How soldering	in melted solder; both temperature and duration in		
		mounting should meet the requirements of out-going		
		SPEC; The rosin is not allowed to adhere to any where		
		other than lead terminal.		
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other matter		
		touch X-CON.		
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of		
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60°		
After mounting	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water cleaning		
	st-100s, 750L,750M;2) Detergents	X-CON products should be dried with hot air (less than		
	including substitute freon such as	the maximum operating temperature).		
	AK-225AES and IPA)			

Issued-date: 2017-03-08	Name	Specification Sheet – ULG				
Version	01		Page	15		
STANDARD MANUAL						

9.It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	oounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo con	npounds				
Formaldehyde					
Polyvinyl chlorid	de (PVC) and PVC blevds				
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Issued-date: 2017-03-08	Name	Specification Sheet – ULG				
Version	01		Page	16		
STANDARD MANUAL						